Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Gene Therapy (2022 )Cite this article
Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 μg/mL and 195 μg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative “vaccine” strategy for those with compromised immune systems or in possible outbreak response scenarios.
Your institute does not have access to this article
Get full journal access for 1 year
All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.
Get time limited or full article access on ReadCube.
All prices are NET prices.
Data generated or analyzed during this study can be found within the published article and its supplementary files.
MacNeil A, Rollin PE. Ebola and Marburg hemorrhagic fevers: neglected tropical diseases? PLoS Negl Trop Dis. 2012;6:e1546.
PubMed PubMed Central Article Google Scholar
Rghei AD, van Lieshout LP, Santry LA, Guilleman MM, Thomas SP, Susta L, et al. AAV Vectored Immunoprophylaxis for Filovirus Infections. Trop Med Infect Dis. 2020;5:169.
Howley PM, Knipe DM, Whelan S. Fields Virology: Emerging Viruses, Lippincott Williams & Wilkins (LWW), 2020.
Heymann DL, Chen L, Takemi K, Fidler DP, Tappero JW, Thomas MJ, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet. 2015;385:1884–901.
PubMed PubMed Central Article Google Scholar
Coltart CE, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160297.
Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH, Grard G, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007;2:e764.
PubMed PubMed Central Article CAS Google Scholar
History of Marburg Virus Disease (MVD) Outbreaks|Marburg (Marburg Virus Disease) | CDC. In, 2022.
Dulin N, Spanier A, Merino K, Hutter JN, Waterman PE, Lee C, et al. Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine. 2021;39:202–8.
CAS PubMed Article Google Scholar
Dibo M, Battocchio EC, Dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MMM, et al. Antibody therapy for the control of viral diseases: an update. Curr Pharm Biotechnol. 2019;20:1108–21.
CAS PubMed Article Google Scholar
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy. Biosaf Health. 2019;1:6–13.
PubMed PubMed Central Article Google Scholar
Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: insights on current FDA-approved monoclonal antibodies against Ebola Virus Infection. Front Immunol. 2021;12:721328.
PubMed PubMed Central Article CAS Google Scholar
Fausther-Bovendo H, Kobinger G. The road to effective and accessible antibody therapies against Ebola virus. Curr Opin Virol. 2022;54:101210.
CAS PubMed Article Google Scholar
Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X, Fusco ML, et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell. 2015;160:893–903.
CAS PubMed PubMed Central Article Google Scholar
King LB, Fusco ML, Flyak AI, Ilinykh PA, Huang K, Gunn B, et al. The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host Microbe. 2018;23:101–109.
CAS PubMed PubMed Central Article Google Scholar
Brannan JM, He S, Howell KA, Prugar LI, Zhu W, Vu H, et al. Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat Commun. 2019;10:105.
PubMed PubMed Central Article CAS Google Scholar
Mire CE, Geisbert JB, Borisevich V, Fenton KA, Agans KN, Flyak AI, et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med. 2017;9:384.
Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013;503:224–8.
CAS PubMed PubMed Central Article Google Scholar
Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol. 2015;182:289–301.
CAS PubMed PubMed Central Article Google Scholar
Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP, Buckley N, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522:487–91.
CAS PubMed PubMed Central Article Google Scholar
Mulangu S, Dodd LE, Davey RT, Tshiani Mbaya O, Proschan M, Mukadi D, et al. A randomized, controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 2019;381:2293–303.
CAS PubMed Article Google Scholar
Sanders JW, Ponzio TA. Vectored immunoprophylaxis: an emerging adjunct to traditional vaccination. Trop Dis Travel Med Vaccines. 2017;3:3.
PubMed PubMed Central Article Google Scholar
Schnepp BC, Johnson PR. Vector-mediated antibody gene transfer for infectious diseases. Adv Exp Med Biol. 2015;848:149–67.
CAS PubMed Article Google Scholar
Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20:173–4.
CAS PubMed Article Google Scholar
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol. 2002;76:8769–75.
CAS PubMed PubMed Central Article Google Scholar
Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481:81–4.
Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med. 2014;20:296–300.
CAS PubMed PubMed Central Article Google Scholar
Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol. 2013;31:647–52.
CAS PubMed PubMed Central Article Google Scholar
Limberis MP, Adam VS, Wong G, Gren J, Kobasa D, Ross TM, et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci Transl Med. 2013;5:187ra72.
PubMed PubMed Central Article CAS Google Scholar
van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis. 2018;217:916–25.
PubMed PubMed Central Article CAS Google Scholar
Robert MA, Nassoury N, Chahal PS, Venne MH, Racine T, Qiu X, et al. Gene Transfer of ZMapp Antibodies Mediated by Recombinant Adeno-Associated Virus Protects Against Ebola Infections. Hum Gene Ther. 2018;29:452–66.
CAS PubMed Article Google Scholar
Deal C, Balazs AB, Espinosa DA, Zavala F, Baltimore D, Ketner G. Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci USA. 2014;111:12528–32.
CAS PubMed PubMed Central Article Google Scholar
Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol. 2005;23:584–90.
CAS PubMed Article Google Scholar
Rghei AD, Stevens BAY, Thomas SP, Yates JGE, McLeod BM, Karimi K, et al. Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models. J Vis Exp. 2021;172:e62727.
van Lieshout LP, Domm JM, Wootton SK. AAV-mediated gene delivery to the Lung. Methods Mol Biol. 2019;1950:361–72.
PubMed Article CAS Google Scholar
Guilleman MM, Stevens BAY, Van Lieshout LP, Rghei AD, Pei Y, Santry LA, et al. AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther. 2021 https://doi.org/10.1038/s41434-021-00236-y.
Mingozzi F, Meulenberg JJ, Hui DJ, Basner-Tschakarjan E, Hasbrouck NC, Edmonson SA, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114:2077–86.
CAS PubMed PubMed Central Article Google Scholar
Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–72.
CAS PubMed Article Google Scholar
Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac gene therapy: optimization of gene delivery techniques in vivo. Hum Gene Ther. 2010;21:371–80.
CAS PubMed PubMed Central Article Google Scholar
French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994;90:2414–24.
CAS PubMed Article Google Scholar
Hunanyan AS, Kantor B, Puranam RS, Elliott C, McCall A, Dhindsa J, et al. Adeno-Associated Virus-Mediated Gene Therapy in the Mashlool, Atp1a3 Mashl/+, Mouse Model of Alternating Hemiplegia of Childhood. Hum Gene Ther. 2021;32:405–19.
CAS PubMed PubMed Central Article Google Scholar
Mayer B, Zolnai A, Frenyó LV, Jancsik V, Szentirmay Z, Hammarström L, et al. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology. 2002;107:288–96.
CAS PubMed PubMed Central Article Google Scholar
Kacskovics I, Kis Z, Mayer B, West AP, Tiangco NE, Tilahun M, et al. FcRn mediates elongated serum half-life of human IgG in cattle. Int Immunol. 2006;18:525–36.
CAS PubMed Article Google Scholar
WHO. Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts. Accessed 29 Jan 2020.
Guenzel AJ, Collard R, Kraus JP, Matern D, Barry MA. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors. Hum Gene Ther. 2015;26:153–60.
CAS PubMed PubMed Central Article Google Scholar
Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC. Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood. 2003;102:480–8.
CAS PubMed Article Google Scholar
Maguire CA, Crommentuijn MH, Mu D, Hudry E, Serrano-Pozo A, Hyman BT, et al. Mouse gender influences brain transduction by intravascularly administered AAV9. Mol Ther. 2013;21:1470–1.
CAS PubMed PubMed Central Article Google Scholar
Zou C, Vercauteren KOA, Michailidis E, Kabbani M, Zoluthkin I, Quirk C, et al. Experimental variables that affect human Hepatocyte AAV Transduction in Liver Chimeric Mice. Mol Ther Methods Clin Dev. 2020;18:189–98.
CAS PubMed PubMed Central Article Google Scholar
Herzog RW, Fields PA, Arruda VR, Brubaker JO, Armstrong E, McClintock D, et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther. 2002;13:1281–91.
CAS PubMed Article Google Scholar
Priddy FH, Lewis DJM, Gelderblom HC, Hassanin H, Streatfield C, LaBranche C, et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV. 2019;6:e230–9.
PubMed PubMed Central Article Google Scholar
Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24:257–61.
CAS PubMed Article Google Scholar
Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci USA. 2009;106:16363–8.
CAS PubMed PubMed Central Article Google Scholar
Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R, et al. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell. 2015;160:904–12.
CAS PubMed PubMed Central Article Google Scholar
Rghei DA, van Lieshout LP, McLeod MB, Pei Y, Lopes JA, Zielinska N, et al. Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines. 2021;9:1186.
Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med. 2009;15:901–6.
CAS PubMed PubMed Central Article Google Scholar
Fuchs SP, Martinez-Navio JM, Piatak M, Lifson JD, Gao G, Desrosiers RC. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS Pathog. 2015;11:e1005090.
PubMed PubMed Central Article CAS Google Scholar
Saunders KO, Wang L, Joyce MG, Yang ZY, Balazs AB, Cheng C, et al. Broadly neutralizing human immunodeficiency virus type 1 antibody Gene Transfer Protects nonhuman primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol. 2015;89:8334–45.
CAS PubMed PubMed Central Article Google Scholar
Martinez-Navio JM, Fuchs SP, Pedreño-López S, Rakasz EG, Gao G, Desrosiers RC. Host anti-antibody responses following Adeno-associated Virus-mediated delivery of antibodies against HIV and SIV in Rhesus Monkeys. Mol Ther. 2016;24:76–86.
CAS PubMed Article Google Scholar
Gardner MR, Fetzer I, Kattenhorn LM, Davis-Gardner ME, Zhou AS, Alfant B, et al. Anti-drug antibody responses impair Prophylaxis mediated by AAV-delivered HIV-1 broadly neutralizing antibodies. Mol Ther. 2019;27:650–60.
CAS PubMed PubMed Central Article Google Scholar
Martinez-Navio JM, Fuchs SP, Mendes DE, Rakasz EG, Gao G, Lifson JD, et al. Long-term delivery of an anti-SIV monoclonal antibody with AAV. Front Immunol. 2020;11:449.
CAS PubMed PubMed Central Article Google Scholar
Martinez-Navio JM, Fuchs SP, Pantry SN, Lauer WA, Duggan NN, Keele BF, et al. Adeno-associated virus delivery of Anti-HIV Monoclonal antibodies can drive long-term Virologic Suppression. Immunity. 2019;50:567–75.
CAS PubMed PubMed Central Article Google Scholar
Liberatore RA, Ho DD. The Miami Monkey: A Sunny Alternative to the Berlin Patient. Immunity. 2019;50:537–9.
CAS PubMed Article Google Scholar
Welles HC, Jennewein MF, Mason RD, Narpala S, Wang L, Cheng C, et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog. 2018;14:e1007395.
PubMed PubMed Central Article CAS Google Scholar
Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30:423–33.
CAS PubMed PubMed Central Article Google Scholar
Phelps M, Balazs AB. Contribution to HIV prevention and treatment by antibody-mediated effector function and advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol. 2021;12:734304.
CAS PubMed PubMed Central Article Google Scholar
We would like to thank all those who were involved in the care of the animals used these studies.
This work was supported by an OMAFRA Alliance grant (UG-T2-2020-101105) and MITACS Accelerate grant (IT18741) to SKW. ADR was the recipient of an OVC PhD Scholarship and an Ontario Graduate Scholarship. This work was also supported, in part, by the Public Health Agency of Canada (PHAC).
These authors jointly supervised this work: Logan Banadyga, Sarah K. Wootton.
Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
Amira D. Rghei, Laura P. van Lieshout, Jordyn A. Lopes, Nicole Zielinska, Enzo M. Baracuhy, Elena S. B. Campbell, Jessica A. Minott, Matthew M. Guilleman, Pamela C. Hasson, Khalil Karimi, Byram W. Bridle, Leonardo Susta & Sarah K. Wootton
Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
Wenguang Cao, Shihua He, Kevin Tierney, Xiangguo Qiu & Logan Banadyga
Avamab Pharma Inc, Calgary, AB, T2T 2P9, Canada
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Conceptualization: ADR, LPvL, XQ, LB and SKW; methodology: ADR, LPvL, WC, SH, KT, JAL, NZ, EMB, ESBC, JAM, MMG, PCH, LS; writing—original draft preparation: ADR and LPvL; review and editing: JL, WC, BT, BWB, LB, and SKW; supervision: LB and SKW; funding acquisition: LB and SKW. All authors have read and agreed to the published version of the manuscript.
Correspondence to Sarah K. Wootton.
LPvL and SKW are inventors on a US patent for the AAV6.2FF capsid. This patent (US20190216949) is licensed to Avamab Pharma Inc., where BT, LPvL and SKW are co-founders and BT serves as an executive. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Experiments involving animals were approved by the University of Guelph Animal Care Committee (AUP# 3827) or the Canadian Science Centre for Human and Animal Health Animal Care Committee (H-16-011) according to the guidelines set forth by the Canadian Council on Animal Care.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Rghei, A.D., van Lieshout, L.P., Cao, W. et al. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther (2022). https://doi.org/10.1038/s41434-022-00361-2
DOI: https://doi.org/10.1038/s41434-022-00361-2
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Gene Therapy (Gene Ther) ISSN 1476-5462 (online) ISSN 0969-7128 (print)